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ABSTRACT. The behavior of solutions of several
boundary value problems for the equation ey" = f(x, vy,
v') when ¢ tends toward zero is studied. Theorems 1-6
are formulated, and the proof of these theorems is
presented.

In this report we will study the behavior of the solutions of several
boundary value problems for the equation

9" =f(0y¥) (>0) 1)
when ¢ tends toward zero. In the case where f(x, y, v') = A(x, y,)y' + B(x, y),
the first boundary value problem -- i.e., the problem with the boundary con-

ditions y(a) = Yoo y(b) = ¥y =" is examined in (Refs. 1, 2). Oleynik and Zhi-
zhin (Ref. 3) have also studied the first boundary value problem in the case
in which f(x, y, y') = A(x, y)y' + F(Xx, vy, v'), where F is a bounded function.

For the solutions ye(x) to equation (1) in the interval [a, b] which
satisfy boundary conditions
(@) =3(9) =0, 2

the following theorems are valid:

Theorem 1. If the following conditions are fulfilled: (1) in interval
asx by [ < ds equation (1) has a solution Yy (x) satisfying conditions (2)
for every sufficiently small € > 0; (2) the derivative y'e(ac) for every stipu-

lated € is a bounded funetion of x in [a, bl; (3) function f is continuous to-
gether with derivatives fx’ fy, and fy' in region G: a <L x b, |y|<Ld, |y << oo;

C42fy,; -k < 0 on G; then on la, bl solution u(x) exists to equation

f(x,n,a’)=0, (3)
which satisfies condition u(b) = 0, and equations
. h '
- — (x—a)
e () — ()1 < (o) eStrme T F T 4 Cy )
, c “rua | 5
@ = (<L e T 4G ate<a<h, )
hold true, where Cys Cys Cl" and 6'2’ are constants not depending on e.
Let us note that conditions (1) and (2) of Theorem 1 will always be
satisfied if fy(x, y, 0) > 0 and [f(x, 3. V< K(1 4 y'%), where

* Numbers in the margin indicate pagination in the original foreign text.




K is constant (Ref. 4).

Theorem 2. If the following conditions are fulf‘illed (1) solution u(x)
to equation (3), on condition that u(b) = 0, exists in la, bl; (2) functwn f
18 continuous together with derivatives f £, and f1, in region G: 'a<Cx <b,,

y—u@I<d, 1< [@>0u(0) —d <0< u@+dy; (3) fr<—k<0

in G: (4) LG 3 <2 (Y 1), in G, where x(2) is a continuous positive func- [430

(-2} |
zdz |

tion when 0 < z < = and such that Sx_(;j= o0 |, then for every sufficiently

) .

small € > 0 equation (1) has a solution y (x) which satisfies conditions (2),
and inequalities (4) and (5) hold true.

Proof. Functions

_ u(x)+ t—l:dl(e"(‘—‘” —1), . u(a)>0;
o(x) = ) A(v—a) , eMy o a,(x-b) |
n(x)—u (a) e == (e —1), u(a)<0;
i nw(x)—n (a)e Xy (s—a) c)lll’r (eh(x~b) -1, ' 1(a)>0;
(0] x) = S T .
- - M -
u(x) — My ,Y"(el'.(" 1), u(a)<0,
R Yy —k VT
where y 1is any number > 1; 11==::f::LéL:Lﬁi,lz==___;tggi_;fi;
[fy(x, y, u'(x))| < Iu"(x)l < M, satisfy inequalities ew"(x) < f(x, w(x),

B'(x)), ew"(x) > f(x wx) w "(x)) on [a, b] for all sufficiently small values

of ¢ > 0. In addition, (D(”):xo,m(b);}o'9(a)<:0’9(b)<;0 , and w(x) < w (%)
when a < x < b.

Hence it follows by virtue of the theorem advanced by Bernshteyn (Ref. 5)
that solution ye(x) exists, and inequality o (x) <y (x) < w(x) holds. From

this inequality, we derive inequality (4). Inequality (5) follows from
Theorem 1.

Let us note that Theorem 2, as follows from Bernshteyn (Ref. 4), may
prove to be false if condition (4) is not fulfilled.

Let us examine several cases where condition(3) of Theorem 2 is not ful-
filled. Let us assume that equation (1) has the form

"= T(x,y) { (:>0). 1"
Theorem 3. If the following conditions are fulfilled: 1) there is a
function ¢(x) in [a, bl such that \P(x, d(x)) = 0;(2) function ¥ is continuous
together with derivative ‘Py in region B:a < x < b, a,(x) LY —2(x) << 25 (x)y| where
ay (x) and ocg(x) are functions,continuous in [a, bL(alA(x)<_O<a2(x), o (a) + a, {a)i

<0< 9(a) + a3(a), p(b)+ o, (6) <0< o (b) + (b)) §; (3) v, zm> 0 in




B, then for every sufficiently small value of € > 0 equation (1') has in B the
unique solution ys(ac) which satisfies conditions (2). The solutions ye(x)

converge uniformly in [a + 8, b -8] (& > 0) to ¢(x)when ¢ > O, gnd ¢ strives to-
ward zero. If, in addition, the function $(x) is twice continuously differen-
tiable, then C - C /_ - S ' ‘ ‘
V7 (x—a -V2e-n
@ —e@I<le@le " * T tlayle T+ 4 Y
where |¢"(x)]|< M.-

In the case where fy' # 0, the following theorem is true:

Theorem 4. Let us assume that the following conditions are fulfilled:
(1) some continuously differentiable solution u(x) to equation (3) exists in
la, b1;(2) function f is continuous together with derivatives f and f , in

region G: a<x<b, |y—u(x)|<d, |y ]|<oo (@d>0,u(a)—d <0<u(a)+d,
u(b) —d <<0<u(b) +d); (3) there are numbers 8 >0,8,>0 (3, +-8,<< b —a), />0
and kg > 0 such that fyr 2-kjvhena <z <+ 6, and (x, y, y') €G, if /431

ula) # 0; fy' ;kZ when b - 62 <x <band (x, y, y') €G, 1f u(b) # 0; 4)

Fyle, ulxz), u' (x)) > 0 when o + 8, 22 b - 8,;5(5) condition (4) of Theorem

2 is fulfilled in G. Then for every sufficiently small value of € > 0 equation
(1) has a solution y.(x) which satisfies conditions (2) such that y_ (x) > u(xz)

when e ~ 0 uniformly in any interval obtained from [a, bl, excluding any
neighborhoods near its ends where u(x) does not become zero. If moreover
u(x) is a function which is twice continuously differentiable, then

' ] |
) — 5 &%)
Flu(b)]eSC e T 4+ Coy

YR

k
a -— (x_
Ye(x) —u(x)] < u(a)| e e

where Cys Cos and C; are constants not depending on €.
The proofs of Theorems 3 and 4 are similar to that of Theorem 2.

Let us examine on [a, b] the solutions ye(x) to equation (1) which satisfy
conditions
aya) + &' ye(a) =0 (l2]+]a’|>0)
. ), o (6)
Bye(b) + 3 ye(b) =0 (2] +|3|>0).

In the case when a' # 0, the following theorem is true:

Theorem 5. Let us assume that equation (3) has a solution u(x)on la, D]
which satisfies condition Bu(b) + B'u'(b) = 0. For every such solution u(x),
let us assume that the following conditions are fulfilled: (1) function f is
continuous together with derivatives fx’ fy, and fy’ in region D:

| S au(a) + «'ur (a) r—a ‘
o<, ly—u(x)i<d, |y = ()| (LD AL | plemceea - r(x),




where o' # 0, d, h, and C are positive constants and r(x) is a positive con-
. tinuous functzon on [a, bl; 2) féy < -k < 0 in D; (3).8'f,(b,u(b), 1 (b))

=8 Sy (b, {0), w (0))5 0. pen for every sufficiently small value of e > 0 and for
every u(x) equatton (1) has a unique solution ye(x) which satisfies conditions

(6). Moreover, inequalities

|38 —u(x) | <Cue,

..L a (7)
' fau(a) +ou’(a)} , (x=—a)
y, (x)— &' () <€ a7 +Ce,
hold where CZ and 02 are constants independent of e.

s h*, C = C* and function r(x) = r*(x) may
be fixed such that in region a ; s |y - u(x)[ < d* there is only one

solution u(x) and

Proof. Constants d = d*, h
<

ﬁ'fy(b’yv;’/)—?f!'(b'—"’-v’):’é:o’ (8
if point (b, y, y') €D*., Let ys(x, 1) be the solution to equation (1) which
satisfies conditions'Ju(a,p)==u(a)-k;5 Jﬂ(a;p)==——-§7[u(a)+mp], , where u is a

parameter, and u(x, p) is a solution to equation (3) on condition that u(a, u)=
= u(a) + p. Using the lemma of Nagumo (Ref. 6), we can prove that ya(x, ) and /432

yé(x, u) exist in [a, b] for all sufficiently small values of |u| and £ > 0.

Moreover, the following inequalities

t
: . M '—E (v—a)
rCom—alaml<e(E+F)et -, %)
x !
, , - - (x—a) ! M\ x —a)
1, 1) — @ (6, )] < e * e (m+Get .
|
lau(a) 4- «'u’(a)} Ial
hold, where |f,|<, Ju"(x,p)| < =" + 1w ‘( O
By virtue of relationships (8) and (9), we find p = p*, |u*| < C € (C a

constant not dependent on &) such that By (b, u*) + g8'y’ (b u*) =0 for all
sufficiently small values of €. Therefore ye(x, u*) = ye(x) is the desired

solution in the region a < x < b, |y - u(x)| < d*, 1Inequalities (7) follow
from inequalities (9).

Function qg(x)==1y3%2f2. satisfies the equation
‘L
cw” — (X, ¥ (%, ), YV, ) w — fy(x,ye(x,1), y (o p)) w=
and conditions w(a) = 1, w'(a) = -a/a'. Hence, accord1ng to Kamke's congruence

theorem (Ref. 7) it follows that either Bw(b) + B'w'(b) > 0 or Bw(b) + B'w'(b) <
< 0 for all sufficiently small values of €. Consequently, the solution found
above ye(x) is unique in the region a < x < b, | y - u(x)l;:d* for every
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sufficiently small value of «.

If, however, o'

= 0 (B' # 0), then the following statement may be proved:
Theorem 6. Let equation (3) have in [a, b] a solution u(x) satisfying

condition Bu(b) + B'u'(b) = 0. Further, let conditions (3) of Theorem 5

(2), (3) and (4) of Theorem 2 be satisfied for every such solution u(z). Then

for every sufficiently small value of € > 0 and for every u(x), equation (1)

has a solution ye(x) which satisfies condition (6) (a' = 0, B' # 0). Here,

inequalities like (4) and (5) hold.

Let us note that the case € < 0 reduces to the case under consideration
if we make the substitution x = -t,

I would like to express my profound gratitude to science teacher I. G.
Petrovskiy.

REFERENCES

Mises, R.V. Acta Sc. Math. Szeged, 12, p. B, 29, 1950.

Coddington, E.A., Levinson, N. Am. Math. Soc., 3, No. 1, 73, 1952,

Oleynik, 0.A., Zhizhina, A.I. Matematicheskiy Sbornik, 31, 73; 3, 709,
1952,

. Bernshteyn, S.N. Uspekhi Matematicheskikh Nauk, 8, 32, 1941.

Nagumo, M, Proc. Phys. Math. Soc. of Japan, 19, ser. 3, No. 10, 861, 1937.

Nagumo, M. ibid., 21, ser. 3, 529, 1939.

Kamke, E. Am. Math. Mont., 46, No. 7, 417, 1939.

WM =

Ny

/Scientific Translation Service
4849 “Tocalome-Lane

La Canada, California’-
NASw-1496 -




